Solutions to Workbook-2 [Mathematics] | Permutation & Combination

DAILY TUTORIAL SHEET 9 Level - 2

171.(ABD)

(A) He can reach (-2) in 2 steps directly in 1 way.

Or he can reach (-2) in 4 steps. For this to happen, he must take a right step within the first 2 steps so that he does not reach (-2) first. \Rightarrow

So, total ways = 3.

- (B) He can reach 3 directly in 1 way in 3 steps. He can reach 3 also in 5 steps. For this to happen, 3C_1 ways. he must take a left step within the first 3 steps. \Rightarrow Total ways = 4.
- (C) Total ways of taking 5 steps without any constraints = 2^5 .

However, we have to subtract scenarios where (-2) or 3 are reached before 5 steps.

He reaches, (-2) in steps: 2^3 such cases.

He reaches (-2) in 4 steps: 2×2 such cases.

He reaches 3 in 3 steps: 1×2^2 such cases.

Hence, totally ways of taking exactly 5 steps = $2^5 - (2^3 + 2^3) = 16$.

- (D) Total ways of performing the experiment = 16+4+3-3 [Ways of reaching 3 in 5 steps have been counted twicel
- 172.(AD) x + y + z + w = 19

Number of positive integer solutions = number of whole number solutions of the equation $x_1 + y_1 + z_1 + w_1 = 15$

- = Number of ways of distributing 15 identical objects to 4 persons $^{15+4-1}C_{4-1} = ^{18}C_3$
- = Coefficient of x^{19} in $(x + x^2 + x^3 + ... + x^{19})^4$
- **173.(AB)** Number of non-negative integer solutions of $x + y + z + w = 10 = {}^{13}C_3 = {}^{13}C_{10}$

Number of ways of distributing 10 identical objects in four different boxes. ⇒ (A) is correct option. Also, it is the same as number of selections of 10 objects from a lot containing 4 varieties of \Rightarrow (B) is correct option; Clearly (C) and (D) are incorrect.

174.(ABC) If there have to be no same neighbours it implies we have to count clockwise and anticlockwise as same which is $\frac{\text{total}}{2}$. So option (A) is correct.

Options (B), (C) are correct as in garland and necklace also, we consider clockwise and anticlockwise arrangements as same.

- **175.(BCD)** No. of ways = $3^5 {}^3C_1 2^5 + {}^3C_2 = 150$
 - **(A)** No. of ways = ${}^5P_3 = 60$
- **(B)** No. of parallelograms = ${}^{6}C_{2} \times {}^{5}C_{2} = 150$
- (A) No. of ways = ${}^{5}P_{3} = 60$ (B) No. of parallelograms = ${}^{6}C_{2} \times {}^{5}C_{2} = 150$ (C) No. of ways = $3^{5} {}^{3}C_{1}2^{5} + {}^{3}C_{2} = 150$ (D) No. of ways = $3^{5} {}^{3}C_{1}2^{5} + {}^{3}C_{2} = 150$

- **176.(ACD)** No. of ways = $\frac{6}{|2|2|2}$
 - (A) No. of ways = ${}^{2+3-1}C_{3-1} \times {}^{4+3-1}C_{3-1} = {}^{4}C_{2} \times {}^{6}C_{2} = \frac{\underline{|4|}}{\underline{|2|2}} \times \frac{\underline{|6|}}{\underline{|4|2}} = \frac{\underline{|6|}}{\underline{|2|2|2}}$
 - **(B)** No. of ways = $\frac{6}{|2|2|2} \times \frac{1}{|3|}$ **(C)** Coeff. of $x^2 y^2 z^2 = \frac{6}{|2|2|2}$ No. of ways = $\frac{6}{100}$ **(D)**

Vidyamandir Classes

177.(ABC)
$$\frac{(200)!}{\underbrace{2!2!....2!(100)!}_{100 \, \text{times}}} = \frac{(200)!}{100!2^{100}} = 1 \times 3 \times 5...199 \text{ Also, } \frac{(200)!}{100!2^{100}} = \left(\frac{101}{2}\right) \left(\frac{102}{2}\right)...\left(\frac{200}{2}\right)$$

178.(ABC) GHINT first word

Rank of NIGHT = $4! \times 3 + 3! \times 2 + 1 = 85$

Rank of THING = $4! \times 4 + 3! + 2! + 1 + 1 = 106$

Number of words in between is 20

- (A) Number of zeroes at the end of $20! = \left\lceil \frac{20}{5} \right\rceil$ (B) Number of divisors of $20 = 2^2 \times 5$ is $3 \times 2 = 6$
- (C) Number of solutions of $x + y \le 19$, $x, y \ge 1$ is ${}^{19}C_2 = 171$.
- **(D)** Number of words in dictionary = 5! = 120.

179.(ABC) Total number of ways – Number of ways when R and W are together = $8! - 7! \cdot 2!$

$$=7!(8-2)=6(7!) \Longrightarrow \tag{B}$$

Now, arrange 6 balls excluding R and W in 6! ways and in 7 gaps, 2 balls R and W can be arranged in 7P_2 ways. \Rightarrow Total number of ways = $^7P_2 \times 6!$ ways = 2.6!. 7C_2 \Rightarrow (C)

180.(BC) The number of ways of inviting, with the couple not included, is 8C_5 . The number of ways of inviting with the couple included, is 8C_3 . Therefore the required number of ways is ${}^8C_5 + {}^8C_3 = {}^8C_3 + {}^8C_3$ $\left(\because {}^8C_5 = {}^8C_3\right)$

Also, $^{10}C_5$ – 2 \times^8 C_4 because total unconstrained selections = $^{10}C_5$

And total bad selections [where exactly one among the couple is selected] = $^2C_1 \times ^8C_4$

181.(ABC) Let x, y, z, u be the number of vertices left between any two chosen vertices.

$$\Rightarrow$$
 $x, y, z, u \ge 1$ and $x + y + z + u = 16$ (i

Equivalently,
$$x_1 + y_1 + z_1 + u_1 = 12$$
; $x_1, y_1, z_1, u_1 \ge 0$

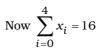
Required ways =
$$\frac{20 \times {}^{15}C_3}{4} = \frac{5 \times 15 \times 14 \times 13}{3 \times 2} = 2275$$

Let the 20 vertices $A_1, A_2, \dots A_{20}$ be placed in a row.

Let the 4 selected vertices be V_1, V_2, V_3, V_4 .

Let x_0 be the number of vertices to left of V_1 .

Let x_i be the number of vertices to right of V_i where $i \in \{1, 2, 3, 4\}$.

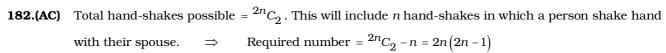


Also:
$$x_i \ge 1 \quad \forall i \in \{1, 2, 3\}$$

Number of solutions to above equation is ${}^{17}C_4$.

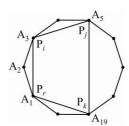
However, we must eliminate the case $x_0 = x_4 = 0$.

Number of such cases = $^{15}C_2$. Hence, $^{17}C_4$ – $^{15}C_2$



183.(AB) Number of times the teacher visits the zoological garden = $^{25}C_5$.

Number of times each child visits the zoo = $^{24}C_{4}$.



- \therefore Number of times the teacher visits the zoo exceeds the number of times each child visits = $^{25}C_5$ $^{24}C_4$
- $\therefore \quad \text{By Pascal's rule} \ ^{24}C_4 + ^{24}C_5 = ^{25}C_5$ $\Rightarrow \quad ^{25}C_5 ^{24}C_4 = ^{24}C_5 \qquad \Rightarrow \qquad \text{(A) and (B) are correct options.}$

184.(AC)

There are 12 shots and 12 rings (combined) on 3 targets. Divide 12 shots among 12 places in $|\underline{12}|$ ways. But shots on target one has to be in a predefined order (inside to outside) and same is predefined for other two targets. Hence total number of ways = $\frac{|\underline{12}|}{|4|3|5}$ or $^{12}C_4$ 8C_3 5C_5

185.(CD) PRMTTNEUAIO

Since no vowel is between two consonants, we need to keep all consonants together. Considering P R M T T N as 1 packet, there are E, U, A, I, O, P R M T T N i.e. 6 packets which are all different. They are arranged in $\frac{6}{2}$ ways. Letters of PRMTTN are arranged among themselves in $\frac{6}{2}$ ways.

61

So, by FPC, total =
$$\underline{|\underline{6} \times \frac{\underline{|\underline{6}|}}{|\underline{2}|}} = {}^{6}C_{4} \times \underline{|\underline{4} \times \underline{|\underline{6}|}}$$